2023 Consumer Confidence Report

Water System Name:	Cuyama Community Servio	ces District I	Report Date:	June 28, 2024
	er quality for many constituents of ing for the period of January 1 -		-	al regulations. This report show. nclude earlier monitoring data.
Este informe contiene in entienda bien.	nformación muy importante so	obre su agua pot	able. Tradú	zcalo ó hable con alguien que lo
Type of water source(s) i	n use: Water Well			
Name & location of source	ce(s): Rehoboth #1 Water Wel	11		
Drinking Water Source A	Assessment information:			
	rly scheduled board meetings for esday of each month at 6:00 p.m	• •		
For more information, co	ntact: Vivian Vickery		Phone: (661) 766-2780
	TERMS USED) IN THIS REPO	ORT	
level of a contaminan water. Primary MCLs a MCLGs) as is econo	nt Level (MCL): The highest t that is allowed in drinking are set as close to the PHGs (or omically and technologically CLs are set to protect the odor, drinking water	MRDLs for commonitoring and requirements. Secondary Driv	ntaminants the reporting reconsting Water	Standards (PDWS): MCLs and at affect health along with their quirements, and water treatment Standards (SDWS): MCLs for
and appearance of	The state of the s	contaminants th	hat affect tas	te, odor, or appearance of the

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one-year-old.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in MCL violation		MCLG	Typical Source of Bacteria		
Total Coliform Bacteria 2023	(In a mo.) 1	0	More than 1 sample in a month with a detection	0	Naturally present in the environment		
Fecal Coliform or E. coli 2023	(In the year)	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste		
E. coli (federal Revised Total Coliform Rule)	<u>0</u>	0	(a)	0	Human and animal fecal waste		

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample system fails to analyze total coliform-positive repeat sample for *E. coli*.

Lead and Copper (complete if lead or copper detected in the last sample set)	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb) 2023	10	2.2	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm) 2023	10	0.11	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	05-16-22	170		None	None	Salt present in the water and is generally naturally occurring

Consumer Confidence Repor	t					3	
Hardness (ppm)	05-16-22	340		None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring	
TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
Arsenic (ppb) Treated water	12-18-23	6.58	3.57 – 23.6	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes	
Fluoride (ppm)	05-16-22	0.12		2.0	1.0	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	
Nickel (ppb)	05-16-22	ND	< 10	100	12	Erosion of natural deposits; discharge from metal factories	
Nitrate (ppm)	01-28-24	0.28		10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Nitrite (ppm)	05-16-22	ND	< 0.050	1.0	1.0	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Zinc (ppb)	05-16-22	ND	< 50	5,000	N/A	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD							
TABLE 5 – DETEC	CTION OF	CONTAM	INANTS WITH	I A <u>SECO</u>	NDARY DR	INKING WATER STANDARD	
TABLE 5 – DETEC Chemical or Constituent (and reporting units)	Sample Date	Level Detected	NANTS WITH Range of Detections	MCL	NDARY DRI PHG (MCLG)	NKING WATER STANDARD Typical Source of Contaminant	
Chemical or Constituent	Sample	Level	Range of		PHG		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant Erosion of natural deposits; residual from	
Chemical or Constituent (and reporting units) Aluminum (ppb)	Sample Date 05-16-22	Level Detected ND	Range of Detections	MCL 200	PHG (MCLG)	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits;	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm)	Sample Date 05-16-22 05-16-22	Level Detected ND 17	Range of Detections	MCL 200 500	PHG (MCLG) N/A	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm) Color (Units) Iron (ppb)	Sample Date 05-16-22 05-16-22	ND 17 1.0	Range of Detections	MCL 200 500	PHG (MCLG) N/A N/A	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Leaching from natural deposits; industrial	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm) Color (Units) Iron (ppb) Treated water	Sample Date 05-16-22 05-16-22 12-18-23	Level Detected ND 17 1.0 ND	Range of Detections	MCL 200 500 15 300	PHG (MCLG) N/A N/A N/A N/A	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Leaching from natural deposits; industrial wastes	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm) Color (Units) Iron (ppb) Treated water Manganese (ppb)	Sample Date 05-16-22 05-16-22 12-18-23 05-16-22	Level Detected ND 17 1.0 ND 41	Range of Detections < 50 < 50 - 100	MCL 200 500 15 300 50	PHG (MCLG) N/A N/A N/A N/A N/A	Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Leaching from natural deposits; industrial wastes Leaching from natural deposits	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm) Color (Units) Iron (ppb) Treated water Manganese (ppb) Odor (Units) Specific Conductance	Sample Date 05-16-22 05-16-22 12-18-23 05-16-22 05-16-22	Level Detected ND 17 1.0 ND 41 ND	Range of Detections < 50 < 50 - 100	MCL 200 500 15 300 50 3.0	PHG (MCLG) N/A N/A N/A N/A N/A N/A	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Leaching from natural deposits; industrial wastes Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water;	
Chemical or Constituent (and reporting units) Aluminum (ppb) Chloride (ppm) Color (Units) Iron (ppb) Treated water Manganese (ppb) Odor (Units) Specific Conductance (µS/cm)	Sample Date 05-16-22 05-16-22 12-18-23 05-16-22 05-16-22	Level Detected ND 17 1.0 ND 41 ND 1,380	Range of Detections < 50 < 50 - 100	MCL 200 500 15 300 50 3.0 1,600	PHG (MCLG) N/A N/A N/A N/A N/A N/A N/A	Typical Source of Contaminant Erosion of natural deposits; residual from some surface water treatment processes Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Leaching from natural deposits; industrial wastes Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits;	

Zinc (ppb)	05-16-22	ND	< 50	5,000	N/A	Runoff/leaching from natural deposits; industrial wastes	
TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language	
None							

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cuyama CSD is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Arsenic-Required Language for systems that detect arsenic above 5 μg/L, but below or equal to 10 μg/L:

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Summary Information for Contaminants Exceeding an MCL, MRDL, or AL or Violation of Any TT or Monitoring and Reporting Requirement

The District is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During calendar year 2023, CCSD did not monitor for nitrate from Water Well #1; however, the result of the nitrate sample taken on January 28, 2024 showed 0.28 ppm, well below the MCL of 10. No violation was issued.

A routine monthly bacteriological sample was collected from the water system on May 23, 2023. The laboratory notified the District that the sample tested positive for Total Coliform (absent for E. coli) on May 26, 2023. Three follow-up samples were required within 24 hours of notification from the laboratory. Follow-up samples consist of the original site, and an upstream and downstream location that are both within five service connections of the original site. The required repeat samples were taken on May 29, 2023, which was after the 24-hour period following the notification from the laboratory. All repeat samples taken on May 29, 2023 and triggered source samples tested negative for both Total Coliform and E.coli.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct one Level 1 assessment, and one Level 1 assessment was completed. Comprehensive inspections of the treatment equipment and sampling site were done on May 29, 2023, and a recheck was done on June 20, 2023. No corrections were required.